Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Observation of nonequilibrium longitudinal optical phonons in InN and its implications

Identifieur interne : 00A477 ( Main/Repository ); précédent : 00A476; suivant : 00A478

Observation of nonequilibrium longitudinal optical phonons in InN and its implications

Auteurs : RBID : Pascal:04-0197892

Descripteurs français

English descriptors

Abstract

Nonequilibrium longitudinal optical phonons in a high quality, single crystal wurtzite structure InN sample have been studied by picosecond Raman spectroscopy. Our experimental results demonstrate that the band gap of InN cannot be around 1.89 eV; but are consistent with a band gap of about 0.8 eV. In addition, they disprove the idea that 0.8 eV luminescence observed recently in InN is due to deep level radiative emission in InN. © 2004 American Institute of Physics.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:04-0197892

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Observation of nonequilibrium longitudinal optical phonons in InN and its implications</title>
<author>
<name sortKey="Liang, W" uniqKey="Liang W">W. Liang</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Department of Physics and Astronomy, Arizona State University, Tempe, Arizona 85287</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Arizona</region>
</placeName>
<wicri:cityArea>Department of Physics and Astronomy, Arizona State University, Tempe</wicri:cityArea>
</affiliation>
<affiliation wicri:level="2">
<inist:fA14 i1="02">
<s1>Department of Electrical Engineering, Arizona State University, Tempe, Arizona 85287</s1>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Arizona</region>
</placeName>
<wicri:cityArea>Department of Electrical Engineering, Arizona State University, Tempe</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Tsen, K T" uniqKey="Tsen K">K. T. Tsen</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Department of Physics and Astronomy, Arizona State University, Tempe, Arizona 85287</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Arizona</region>
</placeName>
<wicri:cityArea>Department of Physics and Astronomy, Arizona State University, Tempe</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Ferry, D K" uniqKey="Ferry D">D. K. Ferry</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Department of Physics and Astronomy, Arizona State University, Tempe, Arizona 85287</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Arizona</region>
</placeName>
<wicri:cityArea>Department of Physics and Astronomy, Arizona State University, Tempe</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Lu, Hai" uniqKey="Lu H">Hai Lu</name>
</author>
<author>
<name sortKey="Schaff, William J" uniqKey="Schaff W">William J. Schaff</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">04-0197892</idno>
<date when="2004-05-10">2004-05-10</date>
<idno type="stanalyst">PASCAL 04-0197892 AIP</idno>
<idno type="RBID">Pascal:04-0197892</idno>
<idno type="wicri:Area/Main/Corpus">00B942</idno>
<idno type="wicri:Area/Main/Repository">00A477</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0003-6951</idno>
<title level="j" type="abbreviated">Appl. phys. lett.</title>
<title level="j" type="main">Applied physics letters</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Deep energy levels</term>
<term>Energy gap</term>
<term>Experimental study</term>
<term>III-V semiconductors</term>
<term>Indium compounds</term>
<term>Phonon spectra</term>
<term>Photoluminescence</term>
<term>Raman spectra</term>
<term>Time resolved spectra</term>
<term>Wide band gap semiconductors</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>7830F</term>
<term>7866F</term>
<term>6320D</term>
<term>7855C</term>
<term>7847</term>
<term>Etude expérimentale</term>
<term>Indium composé</term>
<term>Semiconducteur III-V</term>
<term>Semiconducteur bande interdite large</term>
<term>Spectre Raman</term>
<term>Bande interdite</term>
<term>Photoluminescence</term>
<term>Niveau énergie profond</term>
<term>Spectre résolution temporelle</term>
<term>Spectre phonon</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Nonequilibrium longitudinal optical phonons in a high quality, single crystal wurtzite structure InN sample have been studied by picosecond Raman spectroscopy. Our experimental results demonstrate that the band gap of InN cannot be around 1.89 eV; but are consistent with a band gap of about 0.8 eV. In addition, they disprove the idea that 0.8 eV luminescence observed recently in InN is due to deep level radiative emission in InN. © 2004 American Institute of Physics.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0003-6951</s0>
</fA01>
<fA02 i1="01">
<s0>APPLAB</s0>
</fA02>
<fA03 i2="1">
<s0>Appl. phys. lett.</s0>
</fA03>
<fA05>
<s2>84</s2>
</fA05>
<fA06>
<s2>19</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Observation of nonequilibrium longitudinal optical phonons in InN and its implications</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>LIANG (W.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>TSEN (K. T.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>FERRY (D. K.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>LU (Hai)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>SCHAFF (William J.)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Physics and Astronomy, Arizona State University, Tempe, Arizona 85287</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Department of Electrical Engineering, Arizona State University, Tempe, Arizona 85287</s1>
</fA14>
<fA14 i1="03">
<s1>Department of Electrical and Computer Engineering, Cornell University, Ithaca, New York 14853</s1>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA20>
<s1>3849-3851</s1>
</fA20>
<fA21>
<s1>2004-05-10</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>10020</s2>
</fA43>
<fA44>
<s0>8100</s0>
<s1>© 2004 American Institute of Physics. All rights reserved.</s1>
</fA44>
<fA47 i1="01" i2="1">
<s0>04-0197892</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Applied physics letters</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Nonequilibrium longitudinal optical phonons in a high quality, single crystal wurtzite structure InN sample have been studied by picosecond Raman spectroscopy. Our experimental results demonstrate that the band gap of InN cannot be around 1.89 eV; but are consistent with a band gap of about 0.8 eV. In addition, they disprove the idea that 0.8 eV luminescence observed recently in InN is due to deep level radiative emission in InN. © 2004 American Institute of Physics.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70H30F</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B70H66F</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B60C20D</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B70H55C</s0>
</fC02>
<fC02 i1="05" i2="3">
<s0>001B70H47</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>7830F</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>7866F</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>6320D</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>7855C</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>7847</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Etude expérimentale</s0>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Experimental study</s0>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Indium composé</s0>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Indium compounds</s0>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Semiconducteur III-V</s0>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>III-V semiconductors</s0>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Semiconducteur bande interdite large</s0>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Wide band gap semiconductors</s0>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Spectre Raman</s0>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Raman spectra</s0>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Bande interdite</s0>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Energy gap</s0>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Photoluminescence</s0>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Photoluminescence</s0>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Niveau énergie profond</s0>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Deep energy levels</s0>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Spectre résolution temporelle</s0>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Time resolved spectra</s0>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Spectre phonon</s0>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Phonon spectra</s0>
</fC03>
<fN21>
<s1>131</s1>
</fN21>
<fN47 i1="01" i2="1">
<s0>0418M000043</s0>
</fN47>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 00A477 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 00A477 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:04-0197892
   |texte=   Observation of nonequilibrium longitudinal optical phonons in InN and its implications
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024